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This paper investigates the propulsive performance of the lunate tails of aquatic 
animals achieving high propulsive efficiency (the hydromechanical efficiency 
being defined as the ratio of the work done by the mean forward thrust to the 
mean rate a t  which work is done by the tail movements on the surrounding 
fluid). Small amplitude heaving and pitching motions of a finite flat-plate wing 
of general planform with a rounded leading edge and a sharp trailing edge are 
considered. This is a generalization of Chopra’s (1974) work on model rectangular 
tails. This motion characterizes vertical oscillations of the horizontal tail flukes 
of some cetacean mammals. The same oscillations, turned through a right angle 
to become horizontal motions of side-slip and yaw, characterize the caudal fins 
of certain fast-swimming fishes; viz. wahoo, tunny, wavyback skipjack, etc., 
from the Percornorphi and whale shark, porbeagle, etc., from the Selachii. 
Davies’ (1963, 1976) method of finding the loading distribution on the wing 
and generalized force coefficients, through approximate solution of an integral 
equation relating the loading and the upwash (lifting-surface theory), is used to 
find the total thrust and the rate of working of the tail, which in turn specify 
the hydromechanical swimming performance of the animals. The physical para- 
meters concerned are the tail aspect ratio ((span)2/planform area), the reduced 
frequency (angular frequency x typical lengthlforward speed), the feathering 
parameter (the ratio of the tail slope to the slope of the path of the pitching 
axis), the position of the pitching axis, and the curved shapes of the leading and 
trailing edges. The variation of the thrust and the propulsive efficiencywith these 
parameters has been discussed to indicate the optimum shape of the tail. It is 
found that, compared with a rectangular tail, a curved leading edge as in lunate 
tails gives a reduced thrust contribution from the leading-edge suction for the 
same total thrust; however, a sweep angle of the leading edge exceeding about 
30” leads to a marked reduction of efficiency. Another implication of the present 
analysis is that no negative work is involved in the actual oscillation of the tail. 

The present results are used to obtain an estimate of the drag coefficient for 
the motion of the animals, based on observed data and the computed thrust. 
The results show some evidence of differences between the CD’s for cetacean 
mammals and scombroid fish respectively. Some discussion of this difference is 
also given. 
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1. Introduction 
The continuing theme of Lighthill’s (1960, 1969, 1970, 1971, 1975) and Wu’s 

(1961,1971 a-d) studies of aquatic-animal locomotion is the propulsive efficiency, 
which is similar to the Froude efficiency of a propeller and is defined by 

where U is the mean forward velocity, P the mean thrust required to overcome 
the viscous drag of the animal and E the mean rate at which the animal is doing 
work against the surrounding medium. The importance of this parameter has 
been realized because of the impressive capability of some animals to generate 
surprisingly fast movements at  low energy cost. This parameter depends on the 
propulsive mode, which, following Breder (1926), can be classified as anguilli- 
form (an undulatory mode in which a transverse wave of increasing amplitude 
passes along the body from head to tail) or carangiform (a development of the 
anguilliform mode in which the undulations are confined to the posterior 
part only). The anguilliform mode, which relies heavily on the resistive forces, 
is found in animals swimming with relatively lower hydrodynamic efficiency; 
the carangiform mode relies more on the reactive forces, which can always 
operate more efficiently, and is found in a wide variety of fishes and other 
vertebrates. 

It is interesting to note that all the faster marine animals (represented by 
teleosts such as the tunnyfishes, elasmobranchs, including the fast sharks, and 
most of the cetacean mammals) have evolved a similar carangiform mode of 
propulsion. They undulate their crescent-moon-shaped tails of large aspect ratio 
symmetrically about the peduncle without exhibiting any appreciable bending 
of their rather rigid body. The lunate tail seems to be some sort of culminating 
point of the process of improvement of speed and efficiency in the above-men- 
tioned ace swimmers. Like an aeroplane wing, it possesses sections with a rounded 
leading edge and a sharp trailing edge, which suggests that the techniques of 
unsteady wing theory may be applied to  study its hydromechanics. Lighthill 
(1970) made a start on the study of lunate-tail hydrodynamics by basing his 
two-dimensional analysis on the acceleration potential. Chopra (1976) developed 
the large amplitude theory of lunate-tail hydrodynamics (which is comple- 
mentary to Lighthill’s (1971) ‘large amplitude elongated-body theory ’) and 
predicted that optimum swimming performance is realized with a reduced fre- 
quency around 0.8 accompanied by an amplitude as high as twice the central 
chord length of the lunate tail, which is in line with the carefully documented 
experiments of Fierstine & Walters (1968) on wavybaclr skipjacks. 

These theories overestimate the thrust and efficiency as they account for only 
the spanwise wake vorticity, neglecting the streamwise component resulting 
from the finite span of the wing. Chopra (1974) based his three-dimensional, 
small amplitude, analysis of the unsteady lunate tail, for a model rectangular 
wing, on equations for the vorticity distribution, which he found convenient for 
representing the effect of the streamwise wake vorticity. The analysis gave a 
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clear picture of the variation of the thrust and the hydromechanical efficiency 
with the aspect ratio, the feathering parameter and the reduced frequency, 
besides the important confirmation that the pitching axis has to be approxi- 
mately along the trailing edge for high efficiency. 

The object of this paper is to work out a lifting-surface theory which can be 
applied to small amplitude motion of thin plates with general planform similar 
to the actual lunate tails of the fast marine animals. Heaving and pitching 
oscillations of the tail which maintain a constant rectilinear forward velocity 
U through otherwise quiescent incompressible fluid are considered. These are 
characteristic of the vertical motion of the tail flukes of whales and dolphins. 
The same oscillations turned through a right angle to become horizontal motions 
of side-slip and yaw characterize the motion of the caudal fins of scombroid 
fishes; e.g. tunny, wahoo and wavyback skipjack. The loading and moment of 
forces on the tail are calculated using Davies' (1963, 1976) method, which 
involves approximate solution of the integral equation relating the loading and 
the upwash. The loading and the moment readily yield the values of the thrust 
due to the loading, the thrust due to the leading-edge suction and the mean rate 
of working, which in turn specify the hydromechanical swimming performance 
of the animal. The thrust and the propulsive efficiency depend on (i) the tail 
aspect ratio, (ii) the curved shapes of the leading and trailing edges of the lunate- 
tail wing and (iii) the accompanying oscillatory motions specified through the 
reduced frequency, the feathering parameter and the position of the pitching 
axis. The variation of the thrust and the efficiency with these parameters has 
been discussed in detail to indicate the optimum shape of the tail and the 
accompanying undulatory motions. 

It is found that, compared with rectangular tails, a curved leading edge as in 
the lunate tail gives a reduced thrust contribution from the leading-edge suction 
for the same total thrust. This is an advantage of the lunate tail since very high 
leading-edge suction leads to boundary-layer separation, causing considerable 
thrust reduction. However, a sweep angle of the leading edge exceeding about 
30" leads to marked reduction of efficiency. An implication of the present analysis 
is that no negative work is done in the actual oscillation of the tail. Biologists 
have shown that a positive energy cost is incurred in the musculature not only 
when animals do positive work, but also when they do negative work. Hence the 
total work done during any cycle of oscillation including a phase of negative 
working would involve an additional positive energy cost, yielding an efficiency 
smaller than the purely hydromechanical one. This seems not to be the case for 
the actual motion of lunate tails. The ring vortices, discussed in 9 3 together with 
the positions of the wings shedding them, make clear the relation between the 
efficiency and the position of the axis of the pitching motion. 

In  5 2 the lifting-surface approach to unsteady wing theory is outlined and a 
mathematical formulation of the problem is made, giving formulae for the rate 
of working, the thrust, the propulsive efficiency, the circulation distribution in 
the wake, etc. These are evaluated numericaIly for various tail forms in 0 3. In 
the final section, the drag coefficient C,of the fast-swimming animals is estimated, 
using some observed data and the computed thrust. The results show some 
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FIGURE 1. Definition sketch. 

evidence of differences between the (2,'s for cetacean mammals and scombroid 
fish respectively. These estimated drag coefficients are compared with available 
experimental data. 

2. Mathematical formulation 
In  the mathematical theory of the carangiform motion of aquatic animals 

with lunate tails, attention is given to the motion of the caudal fin (or tail fluke 
in the case of cetacean mammals). This is assumed to be a plate of finite aspect 
ratio with a rounded leading edge and a sharp trailing edge and to be oscillating 
with a small amplitude in a stream of incompressible inviscid fluid of undisturbed 
velocity U in the + x direction. The y axis is taken in a plane of the mean surface 
of the flat-plate wing a t  right angles to the x axis. The origin is taken to be the 
centre of the leading edge of the wing (figure 1).  The x axis is normal to the x, y 
plane, completing a right-handed system. The wing planform is assumed to be 
symmetrical with respect to the x axis and to be represented by the leading- 
edge curve xL(y) and chord length c(y), both of which are even functions of y, 
and by the semi-span s. The lateral displacement of the wing when oscillating 
with angular frequency o is taken as 

z=Re[z,], z g  = {h-iol(x-b))ei"t,  (1) 

where Re means 'the real part of', h and a are real numbers signifying the 
amplitude of heaving and pitching motions respectively, b is the pitching axis 
and t time. A 90" phase difference between heaving and pitching motions is 
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assumed following Lighthill (1970) because any other phase difference, re- 
presented by giving an imaginary part to h, is equivalent to a change in b. 

For an aerofoil oscillating harmonically with small amplitude, the linear 
theory of potential flow around the aerofoil and its vortex wake is fully described 
by Davies (1963) but is outlined here very briefly in order to facilitate the 
following mathematical formulation. The vortex wake shed by the wing is 
planar and parallel to the mainstream flow in the linear theory. The wing and its 
wake are replaced by a doublet sheet. The strength of the sheet is adjusted such 
that no loading is sustained by the wake and such that the lateral velocity 
a$(X,  Y ,  Z)/aZ of fluid a t  the wing (where $ ( X ,  Y ,  2) is a velocity potential in a 
co-ordinate system ( X ,  Y ,  2) stationary with respect to the mainstream flow, 
with X = x -  U t ,  Y = y and Z = z )  is equal to the velocity of lateral pushing 
w = az/at+ Uaz/ax by the wing. Corresponding to the pushing velocity w 
(called the upwash velocity by Davies 1963), there is a wing loading L(x, y, t ) ,  
i.e. a lift force per unit area at the point (x ,  y) of the wing. Finally an integral 
equation relating the upwash velocity w and the loading L is obtained: 

where 

S is the wing area and p the fluid density. 
We normalize lengths and time by 1 (a typical length of the wing) and 1/U 

respectively, and retain the same notation for the normalized quantities except 
that B = h/l signifies the smallness of the amplitude of the oscillation. The wing 
displacement (1) is rewritten here as 

2 

k = l  
z* = €1 2 ak &(x) eivt, (3) 

where = I ,  c z  = 2, a1 = l+iOvb, a2 = -iBv, 
v = wl/U (reduced frequency), O = Ua/wh (feathering parameter). 

The feathering parameter 8 is expected to be less than 1 for significant positive 
thrust, and 8 = 0 corresponds to no pitching motion. The loading is given by 

u x ,  Y, t )  = P(X, y, - 0, t )  -P@, y, + 0, t )  
2 

k = l  
= epU2 2 ak h,(x, y )  e iv t .  

Thus the integral equation ( 2 )  becomes 

(4) 

where wk = ack;,lax+ivck. 

In  order to solve this equation numerically for a given upwash velocity W,, 
a set of n x m points E&(xij, y3) (i = I, ..., n; j = 1, ..., m), a t  which the values of 
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the loading Ak(xij, yj) or lfj’ are to be determined, are chosen at the outset. The 
loadings l$$’ a t  these points are regarded as unknown constants to be determined. 
The loading function A,(x, y) is then represented approximately in terms of the 
rn x n unknown values lit’ so that the exact value of l!$ at €& may be obtained 
by use of interpolation functions which have the same behaviour as the correct 
loading distribution at the leading and trailing edges (see appendix A). In  this 
way a set of simultaneous equations for l$.) is set up in terms of the values of the 
known upwash a t  the upwash points, which are equal in number to the loading 
points but not necessarily at the same positions. 

The numerical procedure has been programmed in FORTRAN by Davies 
(1976) and was available for our project through his kind offer. 

Once the loading distribution is known, we can derive the physical quantities 
in which we are interested. During oscillating motion the wing does work a t  a 
rate E,  with mean E ,  and generates a thrust P, with mean F ,  which is required 
to overcome the drag of the animal when swimming with velocity U .  The hydro- 
mechanical propulsive efficiency 7 is defined by UP/,!?. Using (3) and (4)) the 
rate of working of the wing is 

E = j/sRe[$] Re[-Lldxdy 

= &pU3Z2c2(AE + C, cos 2vt + C, sin 2vt),  (6) 

Im means ‘the imaginary part of’ and a: is the complex conjugate of aj. A minus 
sign has been added to L, which is the force per unit area exerted by the sur- 
rounding fluid. The Qjk (j, k = 1,2)  are computed automatically by using the 
Davies program. Here we are interested not only in the mean E but also in the 
time variation of E ,  which might show a phase of negative E.  In  fact, work of 
biophysicists showing that muscle can only release positive energy whether the 
animal is performing positive or negative work made it important to estimate 
whether or not the total work done during the swimming cycle includes a phase 
of negative working as this would involve an additional positive energy cost. 

In  the two-dimensional case, we have an explicit corresponding formula for 
the rate of working in terms of a reduced frequency r~ = wa/U,  the feathering 
parameter and the position of the pitching axis with half-chord a (appendix B). 

As an indicator of a negative phase of E ,  we define ,u as the ratio of negative 
work to positive work: 

where 

,u = lfl-l/&+) 
S- = 2AE(77 - $o) + 2(C: + Ci)a sin $o, 1.9, = 2nAE -S-, (8 )  

and $0 = cos-1[-AE(C;+C;)-8]. 

Here 8- and S ,  are the negative and positive areas, respectively, enclosed by 
the t axis and the curve A ,  + C, cos 2vt + C, sin 2vt, obtained from (6). 
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The total forward thrust P results from the loading L acting on the wing 
surface, which is indined at  an angle a sin vt to the x axis, and the suction force 
acting on the rounded leading edge owing to the low pressure associated with 
the fast flow around it. The contribution PL from the loading L is given by 

PL = J J Re[L]asin vtdxdy, 
s 

whose mean value is FL = +pU2b2s2AL, 

where 

The suction force, on the other hand, can be derived from the asymptotic form 
of the fluid velocity, which is proportional to x;Q as x, -+ 0, where x, is the normal 
distance from the leading-edge curve xL(y). This behaviour is represented in the 
interpolation formula for L in appendix A. At the leading edge the vortex line 
on the wing is parallel to the leading edge since the mainstream is assumed 
to be a, potential flow. Accordingly the strength y of the vortex at a spanwise 
position y is given by the equation 

pUy cos $6 = L(x, y, t)  as x+xL(y), (11) 

where $6 is the angle between the normal to the leading edge and the x axis 
(figure 1). The local velocity induced by the vortex is 

ZLY = t y  = +L/pU cos $6 

by using ( l l ) ,  (4) and ( A l ) ;  here 

Instantaneously the local suction force takes the well-known steady-flow value 
obtained by the Blasius theorem, by analogy with the two-dimensional case, 
and the mean suction force ps per unit length of the leading edge, directed along 
the outward normal t o  the leading edge, is given by 

from the asymptotic behaviour (12) see (Lighthill 1970, $5). The component 
ps of the mean leading-edge suction along the - x axis is 

- 
P, = Jz Fs(cos$6)Zdx =/Is Fsldy, (15) 
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where d x  is a dimensionless length of line element along the leading edge. Sub- 
stitution of (14) into (15) yields 

- 
Ps = apU212~2As, (16) 

where 

Thus the total mean thrust P and the efficiency 7 are given by 

P = FL-+-Ps = #pU212t9Ap, A ,  = A,+A,, (18) 

and 7 = U P / E  = APIA,. (19) 

c, = P/(apu2E2S) = Ap12/S, ( 2 0 )  

ys = Ps/P = ASIA,. 

A dimensionless representation of the thrust is given by a coefficient defined by 

where S is the wing area. The thrust contribution from the leading-edge suction 
is represented by the ratio _ _  

( 2 1 )  

We are interested in this since a very high leading-edge suction leads to boundary- 
layer separation, which causes a considerable thrust reduction. 

It may be interesting to calculate the wake vortex pattern, which is closely 
related to the propulsive thrust and to the rate of expenditure of wasted energy. 
Knowing the distribution of circulation in the wake, we can draw vortex lines 
by tracing fixed values of the circulation. It is assumed that the vortex lines in 
the wake stay a t  the original position where they were shed from the trailing 
edge; in other words, the movement of a wake vortex, self-induced or induced 
by other vortices in the wake or on the wing, is neglected. Accordingly, we 
consider a stationary wake consisting of a vortex in the co-ordinate system 
( X ,  Y ,  2) fixed to the mainstream flow. The circulation K, around a closed curve 
G around the vortex wake from the negative to the positive side of a point 
P(X,, Y,) (figure 1) is given by the line integral of the gradient of the velocity 
potential $ ( X ,  Y ,  2) along C: 

Kc = (V$). dX = $(X,, Yp, + 0) - $ ( X p ,  yp, - 0). 4 
Equations (179) and (186) of Davies (1963) yield 

where tL is the time when P passed the leading edge xL(Yp). The circulation K ,  
is found to be independent of time t when t > t,, t ,  being the time when P 
passed the trailing edge, because L vanishes in the wake. By using the expression 
for L in appendix A, we obtain the dimensionless circulation: 

showing a sinusoidal dependence on X, with period 2771~. 
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FIGURE 2. Wing planforms for-which detailed calculations have been made. 
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v* v* 
FIGURE 3. Comparisoa of the values of 7 and CT/v$ given by the present (solid lines) and 
Chopra's (1974) (crosses) calculations for a rectangular wing with d = 8. ---, curves for 
a two-dimensional wing. 

3. Numerical results 
Using Davies' program, for given m, n and reduced frequency u, we first 

calculated the loading coefficients Z$?) from (5) and (A 2) and the generalized force 
coefficients Qik from (7) for a given wing planform with a specified leading-edge 
curve zL(y) ,  chord c(y) and semi-span s (thus the aspect ratio d is defined as 
4s2/S, where S is the wing area); these were used in the next step to obtain the 
three coefficients A,, C, and C, of E from (7) and the two coefficients AL and A, 
of P [see (is)] from (10) and (17), respectively, for a given feathering parameter 
8 and a given position b of the pitching axis. Thus we found 7 from (19), C, 
from (20),y,from (21) andp from (8). Finally we calculated the circulationr from 
(22), enabling us to draw vortex lines in the wake. All the computations have 
been made with m = 16 and n = 6, giving a total number of collocation points 
of 96. 

In  order to get some idea of the accuracy of the present computation, we 
employed a rectangular wing with aspect ratio a2 = 8 (A1 in figure 2), for which 
a computation had been made by Chopra (1974) using a completely different 
approach. For this wing the typical length 1 is taken to be the full chord c* .  
Figure 3 compares the dependence of the thrust coefficient C,/v$ and the 
efficiency 7 on 0 and u* = wc,lU for b ,  = 0.75 (solid lines) with that from 
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v* v* v* 
FIGURE 4. The ratio p of negative to positive working of a rectangular wing with d = 8. 
(a) b, = 0.5, (b)  b* = 0.75, (c)  b,, = 1.0. 0,0  = 0.8; a, 0 = 0.6; x , 0 = 0; ---, results for 
a two-dimensional wing. 

Chopra’s computation (crosses), showing fairly good agreement between them. 
The asterisk in v, and b * means that 1 = c*. I n  the same figure the performance 
of the two-dimensional wing calculated by Lighthill (1970) is indicated by 
broken lines. 

Figure 4 shows the dependence of the ratio ,u of the same wing on v, for three 
positions b ,  of the pitching axis, as well as the ,u of the two-dimensional wing 
(broken lines). It is found that there can be no negative work for smaller v* 
and 0.75 < b ,  < 1.0. Hence in both cases the wing does not do any negative 
work if the optimum position of pitching axis is taken (b ,  = 0.8 with 8 = 0.8 
and v, < 1). This conclusion that ha t e - t a i l  swimming is performed under 
conditions which maintain a positive rate of working throughout the cycle is of 
clear physiological importance. 

In order to find out the effect of the sweepback angle of wings on 7 and C,, 
we took two sets of wings: one is a set ( A )  of sweptback wings with constant 
chord and the other a set (B)  of parabolic wings with tapering. The first set 
( A )  is a one-parameter family of wings (with parameter k) described by 

with given c, and yo. All the members of the family A have the same wing area 
S = 2sc, and the same aspect ratio a? = 2s/c,. In  the wing shape of family A ,  
the outboard straight (linear) leading edge is connected to the inboard parabolic 
one by a continuous tangent at yo ( > 0) in order to avoid any singularity when 
yo = 0. We always took s = 3 ,  c ,  = 0.75 and yo = 0.75, yielding S = 4.5 and 
d = 8. Wings A1 and A2 in figure 2 correspond to k = 0 and 8 respectively. 
Computations were made for 0 < k < 3 and b ,  < 4 with fixed values 8 = 0.8 
and v* = 0-8. The efficiency curves for the three fixed values C,  = 0.3, 0.5 and 
0.7 are shown against the sweepback angle 4 = tan-l (k /s )  in figure 5 (a). 
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FIGURE 5. Variation of efficiency for C, = 0.3, 0.5 and 0.7. (a) A-wings, showing 
variation with the sweepback angle g5 = tan-l (k / s )  ; 8 = 0.8, V* = 0-8. (b)  B-wings, showing 
variation with q5av = tan-l (K/s )  ; 8 = 0.8, v* = 0.8. 

The wings in the second one-parameter family (B), with parameter K ,  are 
described by 

with given central chord c, and tip chord cl. The leading and trailing edges, i.e. 
x, and x, + c, are represented by two different parabolic curves, generating ;t 
tapering wing with area S = 3s(2cO +cl) and aspect ratio s$ = 6s/(2c,+c1). We 
always took s = 3, c, = 1.0 and c1 = 0.25, yielding the same values S = 4-5 and 
s$ = 8 as for the A-wings, hence we find that the mean chord of the B-wings is 
C = 0.75 = c*. Wings Bl and B2 in figure 2 correspond to K = Q and 2 
respectively. Computations were made for 0.735 < K < 3.75 and b, < 3 with 
fixed 8 = 0-8 and v, = 0.8, where the suffix zero means that I = c,. The efficiency 
curves for C ,  = 0.3, 0.5 and 0.7 are plotted against an average sweepback angle 
q5av defined by tan-1 (K/s)  in figure 5 (b ) .  

It is found that maximum efficiency occurs somewhere between 9 = 0 and 
20°, depending on C,, for A-wings and around = 14' (corresponding to 
wing B1) for B-wings and then the efficiency decreases with increasing sweep 
angle (9 or q5av). Note that this result has been obtained for fixed values of 8 
and v* (or Y,), while overall performance of the wings may be considered only by 
taking into account the dependence of 7 and C, on 8 and v. 

Wing performance has been computed in detail for the five whownings s in 
figure 2, the last one (B3) being represented by c = 0 . 7 5 ~ ~  and xL = K ( y f ~ ) ~  with 
K = 1.25. The trailing edges of A1 and B1 are straight. Some spanwise variation 
of the chord is given to B1 and B2 and the leading-edge curves of B2 and B3 
are the same. The leading-edge curve of A2 is similar to that of B2 and B3 since 
xL(s = 3) = s f o r  A2 while xL(s = 3) = 8 for B2 and B3. However, the partially 
straight leading edge of A2 leads to larger curvature a t  the centre than that of 
B2 and B3. We may expect to  obtain some idea of the combined effect of a 
curved leading edge and tapering by comparing the wing performance of A1 
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7 0 1 - 0 I 2 0 1 2 

VO (b)  vo VO 

FIGURE 6. Typical 7, v and CT, v diagrams for (a)  A1 (b ,  = 0.75) and A2 (b,  = 1.5) and (b )  
B1 (b ,  = 04), B2 (b, = 1-0) and B3 (b, = 1.0). The broken curves in the (upper) 7, v diagram 
show ,u for 0 = 0,0.6 and 0.8, while the broken curves in the (lower) C,, v diagram show the 
part of CT coming from the leading-edge suction for 0 = 0.6 and 0.8. (Of course CT comes 
entirely from the leading-edge suction for 8 = 0.) 
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and B1 and also some idea of the effect of sweepback by comparing A1 and A2 
or B1 and B2. Some tapering effects will be indicated by comparison between 
B2 and B3. The difference between A2 and B3 will show the effect of the leading- 
edge curvature a t  the centre. 

Figure 6 (a) shows examples of conditions giving fairly good performance of 
wing A1 with b ,  = 0.75 and wing A2 with b ,  = 1.5 for 0 = 0,0.2,0.4,0.6 and 0.8. 
(Reasons for the choice of particular, ‘optimized’ positions b ,  of the pitching 
axis will become clear later; see figure 7.) The two broken lines in the lower 
(CT,v*) diagram show the part of the thrust coming from the leading-edge 
suction for 0 = 0.6 and 0.8. The broken curves in the upper (7, v*) diagram 
show the ratio ,u of negative to positive work, with the scale on the right-hand 
side. The same sort of plot is shown in figure 6 ( b )  for wing Bl with b, = 0.8, wing 
B2 with 6 ,  = 1-0 and wing B3 with b, = 1.0, the reference length this time 
being G,. 

We find marked differences between the 7 and C, curves for A1 and A2 
respectively. For 0 = 0.6 or 0.8, the efficiency of A2 becomes remarkably reduced 
for v* > 1 ,  while the C, curves for A2 are steeper than those for A l .  The same 
sort of difference is found between B1 and B3 or B2 and B3. Hence we may say 
that a t  the cost of efficiency the sweptback wings with constant chord, like A2 
and B3, can produce more thrust with the same frequency or the same increment 
in frequency than the rectangular wing A1 or tapered wings like B1 or B2. The 
difference in performance between Bl and B2 is smaller, but we find that the 
efficiency of B2 for 0 = 0-8 decreases more rapidly than that of B1 for v, > 1 ,  
while the C, curve of B2 is a little steeper than that of B1. It may be worth noticing 
that no marked difference between A1 and A2 or B1, B2 and B3 is found with 
regard to 7 and C, for 8 = 0, 0-2 and 0.4, and hence that wing performance for 
smaller 0 is insensitive to the wing shape. (Of course, these lower values of 0 
are not observed in nature, and we can see that this is due to the low efficiencies 
involved as well as the likelihood of boundary-layer separation resulting from 
the high leading-edge suction.) Conversely the performance for the observed 
higher values of 0 (less than 1 )  is very sensitive to the wing shape. 

The present computations of the propulsive performance of the five wings 
are summarized in figures 7(a)  (0 = 0.8) and (b )  (0 = 0.6) for C, = 0.2, 0.5 and 
1.0. Figure 7 shows the great importance of the choice b ,  (or b,) of pitching-axis 
position for obtaining high values both of the efficiency and of the thrust co- 
efficient. In  the upper part of each diagram three efficiency curves for fixed C, 
are plotted as solid lines, the broken line is the boundary between zero and 
non-zero negative work, above which negative work vanishes, and the dash- 
dot line shows the efficiency curve for v* (or yo) = 1.2, above which the 
reduced frequency is smaller than 1.2. Normally observed reduced frequencies 
based on the central full chord length like c, are less than 1-2 for fast-swimming 
aquatic animals. The lower part of each diagram shows the ratio of the thrust due 
to leading-edge suction to the total thrust for the same values of C,. The wing 
planform corresponding to each diagram is illustrated above it together with 
a horizontal line showing the position of the pitching axis giving maximum 
efficiency for C, = 0.2 (0 = 0.8). 



62 M .  G .  Chopra and T. Kambe 

1 .0 

0.9 

0.8 

0.7 

1 

1 4  

0.9 

0.8 

7/' 0 7  

1 .O 

0.5 Y s  Y s  

0.5 I 0 1.5 

b* 

. - .  
1.5 2.0 

b* 

B 1  B 2  B 3  
1 .0 

0.9 

0.8 

0.7 
11 

0.9 

0 8  
9 

0.9 

0.8 
71 

0.7 

I .0 

0.5 Y e  

0 

0.7 

0; 5 w 0.2 

5 
1 .0 

0 . 5  y ,  

1 .0 

0.9 

0.8 

11 0.7 

.,I I 

4 

0 5  1 0  I 5  1.5 2 0  

b* b* (b) 

FIGURE 7. Efficiency and the ratio yB against b for C, = 0.2, 0-5 and 1.0 with (a) 0 = 0.8 
and ( b )  0 = 0.6.  ---, boundary between zero and non-zero negative work; - - -, efficiency 
curve for Y* (or vo) = 1-2. 



Hydromechanics of lunate-tail swimming propulsion 63 

((.I 

FIGURE 8. Vortex lines in the wake of wing B2 with 0 = 0.8 and v, = 0.6 for (a) bo = 0.5, 

7 = 0.935, A p  = 0.622, C, = 0 . 0 4 3 , ~  = 0 and y, = 0.27; (c)  b, = 1.5,7 7 0493,Ap = 0-946, 
C, = 0.113, p = 0.009 and ys = 0.51. Above each figure the four positions of the central 
chord C' C" when the trailing edge C" is at M ,  E-, M and E,, respectively, are shown; here 
E ,  signify the extreme positions of the sides of the oscillation and M the intermediate 
position. 

7 = 0.876, Ap = 0.558, C,  = A E - A P  = 0.080, = 0.039 and ys = 0.19; (a) bo = 1.0, 

First we consider the case 8 = 0.8 (figure 7a) .  The maximum efficiency qm for 
C ,  = 0.2 is found in the diagram for Bl as v:z)(Bl) = 0.935, which is not much 
different from q $ 2 ) ( A l )  = 0.930 or q$3B2) = 0.925, the difference 0-005 in q 
being of the order of the computational error. It is very interesting to find that 
all these maximum points of efficiency for C,  = 0.2 lie within the region D 
specified by no negative working and a reduced frequency (vo or v,,) less than 1.2. 
If we restrict ourselves to D, a thrust as high as C,  = 0-5 is made possible largely 
by the wings B 3  and A2, while no wing can generate C,  = 1.0 in D with 8 = 0.8. 
The maximum efficiency ~ 2 ~ )  for C ,  = 0.5 is found in D for B 3 ;  for which 
qg5) (B3)  = 0.875, while q g 5 ) ( A 2 )  = 0-830. The ys of all the wings for C,  = 0.2 
is less than 0.5 except in some cases for A1, A2 and B3, and is smallest for B1 
and B 2 .  However the smallest ys for C ,  = 0.5 is found for B 3 .  Note that smaller 
ys is advisable for avoiding leading-edge separation. 

The general impression of figure 7(b) ,  8 = 0.6, is that there is little difference 
among the five diagrams, confirming that the performance for smaller 8 becomes 
insensitive to the wing shape as mentioned earlier. The maximum efficiencies 
for C ,  = 0.2 and 0.5 in each diagram are all smaller than the corresponding 
values for 8 = 0-8. However it is remarkable to find that a larger thrust (C, = 0.5) 
can be generated in D for 8 = 0.6 by all the wings and also that an even higher 
thrust (C, = 1.0) is possible in D for B 3  and A2. The maximum efficiency for 
C ,  = 0-5 is 0.865, found for Bl ,  which is smaller than the value 0.875 for B 3  
with 8 = 0.8. 

Thus, if a smaller thrust (C, = 0.2) is required, the best wing out of the five 
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is B1 with 8 = 0-8. On the other hand if a thrust as high as C, = 0.5 or 1.0 is 
required, the best wing is found to be B3 with 8 = 0.8 for C, = 0.5 and 8 = 0.6 
for C, = 1.0. Note that little difference is found between B1 and B2 although 
the overall performance of B2 is a little worse. As far as the efficiency is concerned, 
no dramatic difference is found between B1 and A l .  It is important, however, 
that the contribution from the leading-edge suction is less for B1 than for A l ,  
leading to a reduced likelihood of boundary-layer separation at  the leading edge 
for Bl ,  and that the maximum efficiency of B1 is a little higher than that of A 1. 
Hence B1 is considered to be more advisable. As a result wings with a curved 
leading edge of small curvature at the centre, like the B-wings, are seen to be 
better than A l ,  which has a straight leading edge, or A2, which has a partially 
straight leading edge with larger curvature at  the centre. 

Vortex lines in the wake of wing B2 are illustrated in figure 8 for 8 = 0.8, 
v, = 0.6 and (a )  b, = 0.5, ( b )  b, = 1.0 and (c) b, = 1.5. Above each figure four 
positions of the central chord C'C" are shown. Two of these correspond to the 
two extreme positions of the trailing edge C" during lateral oscillation with E ,  
signifying the extreme positions of the & sides of Z = 0 respectively; the other 
two correspond to the intermediate position M of C" when C" lies in the x, y 
plane. The + side is supposed to be this side of the paper. Hence we can get a 
very rough idea of the phase of the oscillation at which the vortex ring is shed 
by the wing. The largest efficiency 7 = 0.938 is found in (b ) ,  where the coefficient 
C, of mean energy wastage in the wake per unit time, defined by 

( E -  U P ) / ( & p U 3 ~ $ ~ 2 )  = C,-Ap, 
is lowest, equal to 0.043. We can see that the centre of the wake vortex ring in 
(b)  is shed when the wing is near the intermediate position M ,  while the corre- 
sponding centres in (a )  and (c) are shifted to the left and right of M respectively. 
Although the largest thrust, A ,  = 0-946, occurs in (c), 7 is low and hence the 
energy wastage coefficient is comparatively large. It seems that this results 
from the position of shedding of the vortex ring being shifted away from the 
intermediate position, i.e. it  is shed too early. Owing to the lower efficiency and 
non-zero p [and the larger 'ys of ( G ) ] ,  cases (a )  and (c) are not advisable. 
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4. Comparison with observations and discussion 
The present results are further applied to predict the actual thrust and the 

associated drag coefficient of motion of aquatic animals for which some observed 
data are available. The results presented in the previous section have been 
obtained under the assumption of infinitesimal lateral oscillation. In  order to 
make a realistic estimate of the thrust of aquatic animals, we have to extra- 
polate these results to finite amplitude motion. Fortunately an idea of the 
extrapolation may be obtained from the recent work of Chopra (1976) for finite 
amplitude oscillation of a two-dimensional flat plate. The specification of the 
wing motion by Chopra is somewhat different from the present one. However, 
defining an extended feathering parameter 8, as (Utana)/(wh) (a should be 
replaced by 8, - a, in Chopra’s notation) instead of the 0 = Ua/wh of the present 
case, we obtain the wing performance illustrated in figure 9 for 8* = 0.6. This 
figure shows the amplitude effect on 7 and a thrust coefficient Cg = ~ / ( ~ p U 2 c , )  
with E* = h/c, (c* being the full chord, equal to 2c in Chopra’s notation). Figures 
9 (a)  and (b )  both show, for comparison, curves corresponding to small amplitude 
motion (e*+O) of the two wings with d = co and 8 (rectangular), represented 
by solid and broken lines respectively. Three points on each curve for finite e* 
come from the three figures given by Chopra (1976). The deviation ofthe efficiency 
curves from the small amplitude case (E* +- 0)  becomes greater as B* increases. 
However, the deviations are significant only for larger values of v* (greater than 
0.4). The deviations are most significant for still larger values of v* ( >  0-6), at 
which, on the other hand, the effects of finite aspect ratio are quite small. This 
suggests that Chopra’s finite amplitude results, although calculated for the case 
of infinite aspect ratio, can be effectively used as a correction to our small ampli- 
tude calculations for planforms of finite aspect ratio. 

Our main interest is in how the thrust depends on e*. In  figure 9(b) we find 
that 17% is nearly proportional to e i ,  a t  least up to e* = 2-0 and for v* < 0.4. 
It may be worth pointing out that the 12% curve for e* = i - 0  is a Iittle above the 
curve of C, ( = C$/&) f o r d  = co and B* + 0. 

I n  the following, two sets of data are cited: one from Fierstine & Walters 
(1968) on the motion of a wavyback skipjack, Euthynnus afJinis (a scombroid 
fish), and the other from Wu (1971 b )  on a porpoise (or Pacific whitesided dolphin), 
Lagenorhyncus obliquidens. The data on the porpoise were first reported by 
Lmg & Daybell (1963) (unfortunately this is not available to the authors at  
present). The data are summarized in table 1, which gives the body length L, 
speed U ,  Reynolds number R = UL/v,,, (vVis = kinematic viscosity of water), 
reduced frequency vo, amplitudee, and surface area ratio STIS, (S, = total body 
surface area, S ,  = projected planform area of tail). The body length L, the central 
chord c, and the ratio S,/S, of the wavyback skipjack are not reported by 
Fierstine & Walters, so that L = 1-0 x i02  em and c,/L = 6.2 x are taken 
from the illustration by Masuda, Araga & Yoshino (1976). Five examples of 
the motion of the wavyback skipjack are shown and the maximum and minimum 
values are given in table I with the mean value in parentheses. The value of 
ST/#, for the wavyback skipjack was obtained in two steps: first, projected 
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Body length 
L (om) Speed, U (cmls) R = UL/v,, ,  V o  = W C o / u  €0 = h / C o  STISB 

Porpoise 2.0 x lo2 5.1 x lo2 9.3 x 106 0.7 1 1.3 0-03 
Wavyback 1.0 x lo2 3.1 to 8.2 x lo2 2.8 to 7.5 x lo6 0.70 to  1.05 1.4 to 2.5 0-02 

TABLE 1 

skip jack (4.8 x lo2) (4-3 x 106) (0.94) (1.9) 

B1 (b,  = 0.8, 8 = 0.8) B 2  (b,  = 1.0, 8 = 0.8) 
A 

I 
A > I \ 

CT ci CT CD CT 5 CT C D  

Porpoise 0.17 0.29 0.01 0.19 0.32 0.01 

skipjack (0.28) (0.98) (0.02) (0.30) (1.06) (0.02) 
Wavyback 0.17 to 0.31 0.60 to 1.20 0.01 to 0.03 0.19 to 0.38 0.74 to  1.48 0.015 to 0.03 

TABLE 2 

surface areas Sb ( = S,.) and S& shown in a side-view photograph of the fish were 
measured by using a planimeter; then, the mean ratio q of the circumferential 
length of the cross-sections to the depth was measured for a scombroid fish 
bought at a fish market. The ratio ST/#, used in table 1 is obtained as ST/Skq, 
where q = 2.6. Note that the vo and eo of the porpoise correspond to the lower 
limit of those of the wavyback skipjack, while the R of the porpoise is higher 
than that of the wavyback skipjack. 

In  steady swimming the thrust P = +pU2~tSTC, is balanced by the mean 
total drag = &/,U2SBCD acting on the fish’s body, yielding a drag coefficient 
CB = e! CT(S,/S,). The tails of both the animals are assumed to be like B 1  or 3 2 .  
Hence estimates of C, based on table 1 and the value of C, for 8 = 0.8 in figure 
6 ( b )  are shown in table 2 .  We find that the drag coefficient Cg’ of the porpoise 
is considerably smaller than the drag coefficient 17%) of the wavyback skipjack. 
(The superscripts ( p )  and (w) refer to the porpoise and the wavyback skipjack 
respectively.) This smaller value CB) resulted from the smaller vbp) and eg). Note 
that the smallest value 0.70 of vbw) for the wavyback skipjack corresponds to the 
largest &), i.e. 2.5. 

The value Cg’ = 0.01 is larger than the C, estimated so far for the porpoise. 
We are here over-estimating CD, because thrust reduction is expected by (i) the 
absence of leading-edge suction over part of the tail owing to the presence of a 
peduncle anterior to the tail, giving an assumed reduction of 10 yo of the total 
thrust, and (ii) the smaller aspect ratio, 5.4, of the porpoise rather than the value 
8 used of the present computation, leading to 6 %  reduction from a rough 
reading of the diagrams of Chopra (1974). Some substantial error must result 
from the assumption cc e: for the finite amplitude motion. Thus, assuming 
20 yo tot,al reduction of thrust, we obtain C, = 0.008, which is still larger than 
the value 0.003 based on turbulent flow with 40 yo laminar flow around a rigid 
streamlined body at the speed U p )  = 2 x lo2 cm/s (Wu 1971 b) .  Compared with 
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the drag coefficient of steady swimming, the value of C, estimated from experi- 
mental data on flow around a stationary body or from deceleration measurements 
during gliding is likely to be too low. For, during steady swimming, the 
animal is always oscillating laterally owing to recoil resulting from the tail 
oscillation. This is expected to lead to a value of C, larger than 0.003. Hence 
the higher Cg’ obtained from the computed thrust is considered to lie in the 
right direction. It should be noted that, if we take as the C, in table 2 the 
value appropriate for B = 0.9 instead of 0.8, the estimated values of C, for both 
the animals are reduced by about half. 

We must be careful about deriving anything definite from only two examples, 
but we are tempted to say, concerning the considerable difference between 
Cg’ and Cg’, that the flow around the wavyback skipjack might be different 
from that around the porpoise. In  this context, two experimental measurements 
are referred to. The first is the frictional drag coefficient for flow along a rough 
flat surface, which is calculated to be 0.02, independent of R, for L/(d‘ imen- 
sion of roughness) = 50 by using Schlichting’s semi-empirical interpolation 
formula (Goldstein 1938, $168). The gills and scales on the fish’s body are 
considered to be roughness of dimension of the order given above. The 
second quantity is the drag coefficient of a wing with control gaps i.e. a wing 
with a leading-edge slat and a trailing-edge flap. Figure 20(a) of Hoerner 
(1965, chap. 6) shows that C, = 0.015 (+CDs, CDs being based on the projected 
planform area, C, = 0.3) when there is flow through the leading-edge slat and 
C, = 0.009 with no flow there. This second example was chosen as we knew 
that, when a scombroid fish is swimming steadily, i t  keeps its mouth open in 
order to inhale a large water flow, which is exhausted as a jet through the narrow 
gaps of the gills. This leads to additional drag. Further, the jet from the gills 
may disturb the boundary layer over the fish surface, causing turbulence in it. 
I n  addition there is lateral oscillation of recoil. Therefore it seems plausible 
that the C, of the wavyback skipjack (or, more generally, scombroid fishes) 
is as high as 0.02. This is consistent with the values 0*0085-0*025 (average 0.017) 
obtained from the values in table 2 by subtracting 15%, the aspect ratio of 
scombroid fish being not far from 8. 

Thus we may say that the flow around a porpoise is something like a turbulent 
flow over a smooth surface wit’h a substantial laminar region, while the flow 
around the wavyback skipjack resembles flow over a rough surface influenced 
by through flow. 
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Appendix A 
The loading function is written [see (4)] as 

where 

m- 1 

r=O 
= [2/(m+1)] X sin[(r+l)+j]sin[(r+l)+] J 

and 

the dash on the product operator Ii indicates that the factor with r = i (or 
Y = j) is to be omitted. The values of the loading function A,(x, y) at the loading 
points (ti, vj), i.e. @, are determined approximately by using the integral 
equation (5), or equivalently by a set of mn simultaneous equations obtained 
from it. 

Appendix B. Rate of working of the two-dimensional flat-plate wing 
Following Lighthill (1970, 5 5), the loading is represented as 2p(@),=-oeiwt. 

Hence the rate of working per unit span is given, using his notation except that 
b is written here as b,, by 

pE = Re [2p(  @)s=--o eiwt] Re [aZ/at] dx 
-a 

= &Re [BT Z +  Bg &] + $Re [ (B,Z+B,&) eZiwt] 

= naUSe2a2(AE + C, cos 2wt + C, sin 2wt), 

where B, = -wab*+iwh, B, = - a w ,  (r = wa/U,  
e = h/a, p = b/a, 8 = Ua/wh, 

A ,  = ea(p + Q) $r - +i - c2e2p, 

c1 = 8a(/3+ 8) $hr+ $i - a28/3(O- I ) ,  
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c, = -Or(/?+ 8)ll.i + 7j-r - (TB + *(T[l - (Q 
llr = [ B O ( ~  - 4) + i(e - i 11 p(a)  + ~G(Q-)-J + p(~, 

B2a21, 

and 3 + iG is the Theodorsen function. It is easily shown that the constant term 
7raU3e3r2A, is equivalent to expression (73) of Lighthill (1970). 
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